極限レーザーと先端放射光技術の融合による 軟X線物性科学の創成

物性研・LASORセンター 辛 埴

量子ビーム技術の革新が、光科学のプ ラットフォーム化をもたらす

- 物性応用を目指した高調波レーザーの開発
- 次世代放射光につながる、放射光利用技術の高度化

多様な光源技術を包含した 軟X線物性科学の創成

<u>光源·利用技術</u>

<u>サイエンスのプラットフォーム化</u>

交差する3つの分光

研究の背景: 極紫外・軟X線光源の著しい発展

これまでより格段に優れた超高速、超高分解能を持つ極紫外・軟X線レーザーや放射光を用いることにより、これまで不可能だった実験が可能。放射光とレーザー両コミュニティの夢が実現。

物性研究にとって必要な光とは

物性研究には、安定・高繰り返し・大きな平均パワーが必要

- 放射光は500MHzで、超安定、大きな平均パワーで、物性研究向き
- 高調波レーザーにおいては、これまでそのような光源は無かった
 他に類を見ない物性研究用レーザー光源を開発する必要性

軟X線プラットフォームが貢献する物質科学

研究体制と若手の人材育成

若手の育成

放射光も、軟X線高調波レーザーも横断的に研究を行う特任研究室を創設することにより、新しいタイプの人材育成を行う

岡崎特任准教授(H26年7月より)

その他のアクティビティ

- ・8月と1月に全体打ち合わせ
- 毎月、チームごとの打ち合わせ(昼食会)、
 勉強会、セミナー
- 本事業のWebの立ち上げ

物性研E棟におけるレーザー光電子分光、吸収分光の設備

物性研E棟におけるレーザー光電子分光、吸収分光の設備

施工前(2012年)

2014年 現在

レーザー光電子分光の開発(超高分解能に特徴)

元素選択制を利用した放射光光電子と相補的な役割

超高エネルギー分解能光電子分光の開発 レーザーを用いて分解能70 μeVを達成 (放射光では分解能1 meV程度を目標)

超伝導機構の解明に大きく寄与;

放射光に取って代わる テーブルトップ光源の誕生 鉄系超伝導体;東工大の細野グループにより発 見された高温超伝導体

高繰り返し真空紫外光源の開発はり高繰り返しへ

100 MHz, 6 eV, 200 fs (5meV) system

- Power: 1×10^{14} [photons/s] (0.1 mW) ٠
- Flux: 1 x 10¹⁴ [photons/s/0.1%bw] ٠
- Brilliance: 1 x 10¹⁶ [photons/s/0.1%bw/mm²mrad²]
- Peak Brilliance:5 x 10²⁰ [photons/s/0.1%bw/mm²mrad²]

Yb-fiber laser + wavelength conversions

高繰り返しへ 1000 MHz, 6 eV, 200 fs (5meV) system

高繰り返し真空紫外光源の開発;より高いエネルギーへ

8eV、11eV、・・・のファイバーレーザー高調波の開発

時間分解光電子分光 エネルギーの高い軟x線でのフェムト秒レーザーとピコ秒放射光の活用

水素発生太陽光反応

ピコ秒、フェムト秒、アト秒の

(界面の現象、固体中の現象、原子中の現象) 光触媒反応の機構解明

化学反応(基本は電子と 正孔の解離の制御)の直 接観測が観測可能に!

より効率の良い太陽電池 の作成や水素発生装置、 人工光合成材料の開発

グリーンテク/ロジー を推進

高次高調波によるコヒーレント軟X線発生

OPCPA法による高強度超短パルス光の発生

長波長で時間的にも空間的にも完全に制御された光を作り、 それをタネに高調波を作り、時間的空間的にコヒーレントな軟X線、ア ト秒光、を作成する

OPA + CPA = OPCPA

光パラメトリック増幅法 Optical Parametric Amplification (OPA)

反転分布を伴わない増幅。材料を選ぶことにより、光増幅の特性を自在に制御出来る。

瞬間的な光強度による媒質の損傷を防ぐため に、被増幅光を時間的に伸ばす。

チャープパルス増幅法 Chirped Pulse Amplification (CPA)

近赤外レーザー(チタンサファイアレーザー)と 赤外光源(パラメトリック増幅)との比較

	従来手法	我々のアプローチ
	Ti:sapphire CPA	IR OPCPA
中心波長	800 nm	1600 nm
利得帯域	Ti:sapphire	BIBO OPA
	100 nm typ.	>1000 nm
	(~0.1 octave)	(~ 1 octave)
Up at 10¹⁵ W/cm ²	60 eV	240 eV
Saturation intensity of He		
最大光子エネルギー	210 eV	780 eV
3.17Up + lp	極紫外	軟X線

応用分野

- 軟X線(sub-keV領域)でのアト秒軟X線パルス発生
- 軟X線領域の吸収分光 (軽元素のK吸収端、遷移金属のL吸収端)
- アト秒電子波束の発生と光制御
- 光電子散乱(アト秒・オングストロームスケールの動的分子イメージング)

プロトタイプ光源の構成(物性研D棟)

励起光の発生

- 信頼性の高いチタンサファイアレーザーを励起源とする。
- BIBO結晶を用いることにより、赤外域での超広帯域増幅を実現。
- パルス波形(電場包絡線)だけでなく、キャリアエンベロープ位相も制御。

N. Ishii et al., Opt. Lett. 37, 4182 (2012)

プロトタイプ光源の出力(物性研D棟)

プロトタイプ光源によるコヒーレント軟X線発生

光子エネルギー 330 eV (波長3.8nm)までの軟X線発生を確認。 炭素K吸収端付近でアト秒軟X線パルスが発生(シミュレーションとの比較による)。

N. Ishii et al., Nature Commun. 5:3331, 1-6 (2014)

本プログラムで開発する光源のコンセプト

- プロトタイプ機の冗長性を減らし、シンプルかつコンパクトにして、
 安定性と信頼性をさらに向上させる。
- プロトタイプ機以降の新技術を導入し、高出力化を図る。
 国内の優れた光技術による競争力の確保
 透過型回折格子(キヤノンと共同開発)
 赤外分散補償ミラー(東海光学と共同開発)
- 固体の超高速分光を想定した構成とする。

波長変換によって得られる多様な出力光(テラヘルツ~軟X線まで) 全ての「光」が、フェムト秒~アト秒の精度でタイミング同期する。

	波長	パルス幅	
チタンサファイアレーザー基本波	800 nm	50 fs	
チタンサファイアレーザー白色光	600-900 nm	10 fs	
チタンサファイアレーザー二倍波	400 nm	50 fs	
赤外OPCPA	1200-2100 nm	10 fs	
高次高調波	EUV 20-200 eV	0.1-10 fs	
	SX 200-300 eV	0.1-10 fs	

本プログラムで開発する光源(概要と現状)

高強度超短パルス チタンサファイアレーザー

本プログラムで開発する光源(概要と現状)

高強度超短パルス チタンサファイアレーザー

軟X線レーザーを用いたポンプ・プローブ型光電子分光 (本プログラム以前)

- 内殻時間分解PES(最低でも60eVが必要、できれば120eV)

 う元素選択的な電子状態のダイナミクス
- ▶ フェムト秒領域の軟X線時間分解ARPES
 →Brillouin zone全域の電子状態ダイナミクス
- > 大強度軟X線領域での新しい多光子光電子現象の探索

高調波レーザー時間分解ビームラインと時間分解光電子分光装置(本プログラム)

ガスセルと高調波技術の開発

- Acrylic window improve
- High throughput TMP (Osaka Shinkuu 2200 L/s)
- Change to static gas cell

高調波スペクトル

- Cut-Off Energy: 65 eV (@ 400 nm) and 85 eV (@ 800 nm)
- Multi Layer Mirror: 28 and 40 eV (@ 400 nm) and 70 and 82 eV (800 nm)
- Al Filter and Zr Filter (for 82 eV)

高調波の分光機構;多層膜鏡切り替え機構

- 4 set of multi layer mirror
- Optical path alignment by Picomotor
- Change of multi layer mirror without vacuum breaking

Insulator-Metal Transition (MIT) in VO₂

Femtosecond X-ray Diffraction

Cavalleri et al. PRL 87, 237 (2001)

Temperature Dependence of PES Spectra

Time-resolved PES

Low temperature spectrum is changed by the pump light, but is different from high temperature phase

Pump-Power Dependence

Threshold (~ 9 mW) Behavior Photo-induced phase transition

Transient Changes of PES Spectra

Yoshida et al., PRB(2014)

- Intensity appears at E_F
- Suppression around -1 eV
- Band structure does not change much except Fermi level.
 Photoinduced phase is different from high temperature phase

Transient Changes of PES Spectra

Yoshida et al., PRB(2014)

- Intensity appears at E_F
- Suppression around -1 eV
- Band structure does not change much except Fermi level.
 Photoinduced phase is different from high temperature phase

Temporal Evolution of *E_F* Weight

Temporal Evolution of E_F Weight

Yoshida et al., PRB(2014)

33

Three distinct timescale

Linear Increase of Intensity

Growth of Metallic Domain Facilitated by Phonon

軟X線レーザーの開発による物性研究

LASORセンターにおける物性研究を目指した極紫外・軟X線光科学の推進

SPring-8 BL25SU 軟X線放射光を用いた顕微光電子分光

BL25SU;日本で最も新しいデザインの軟X線ビームライン

SPring-8 BL25SU 軟X線放射光を用いた顕微光電子分光

ご清聴ありがとうございました

